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ABSTRACT
This paper introduces AceRoute, an adaptive compute-efficient
FPGA router that tackles the long-standing issue of lengthy FPGA
compilation times given complicated FPGA architectures and de-
signs to synthesize. We thoroughly profile modern FPGA routing
patterns and identify the runtime hotspot: routing bottleneck con-
nections in congested designs. However, previous works on routing
acceleration hardly target mitigating connection-wise routing diffi-
culties by characterizing device resource expansions and shifting
path-exploration modes of connections.

In this work, we propose a bidirectional intra-connection routing
paradigm for the first time, which efficiently navigates congested
device regions by initiating searches from both source and sink
nodes. This approach significantly outperforms traditional unidirec-
tional exploration in congested conditions. Furthermore, for each
connection to route, we develop an adaptive strategy to select the
optimal search mode online between uni- and bi-directional based
on the current congestion situation. Our approach is pluggable and
versatile, allowing seamless integration into existing FPGA routers
and providing instant speed improvements with merely several
hundred lines of code.

Evaluation on FPGA24 contest benchmarks shows that our router,
powered by adaptive bidirectional search, achieves over 2.4× and
3.2× faster routing on average with a serial and a 2-thread paral-
lel version, respectively, compared with established routing tools
RWRoute and Vivado. Additionally, when integrated into typical
partition-based inter-connection parallel routers, our approach
overcomes their inherent load-balance problems and amplifies the
speedup to RWRoute from 2.2× to up to 5×.
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1 INTRODUCTION
The lengthy compilation times have long been an Achilles heel for
field programmable gate array (FPGA) technology, and this issue is
further exacerbated by the growing complexity of both the modern
FPGA architectures and the user designs. As a pivotal backend
step in the FPGA compilation flow, routing constitutes a significant
portion of the runtime [3], which assigns logic nets to physical
routing resources on an FPGA. Given the trend of escalating scale
of FPGA devices and applications, there exists an urgent need to
speed up the compute-intensive routing process.
Mainstream Routing Paradigm. Before going deeper into the
prior art of routing acceleration, it is necessary to review the land-
scape of the mainstream routing frameworks and analyze their
runtime bottlenecks. The principles of negotiated congestion [11]
and connection-based [22, 23, 30] routing now underline most mod-
ern FPGA routers [9] and we will elaborate them in §2.2. For now,
it is sufficient to learn that signals are routed iteratively in the unit
of connection, which identifies a pair of a source and a sink node.
The goal is to find node-disjoint paths that complete all connec-
tions over a resource graph. Once some paths overlap on a certain
resource node, which creates congestion, the cost of this node is
increased to discourage other connections from routing through it.
In each routing iteration, the overlapping connections are ripped
up and rerouted to expect that all the conflicts are eliminated.
Runtime Bottleneck. The runtime of an FPGA router is essen-
tially determined by the number of resource expansions when
exploring the best-cost path for each connection. The routing of
conflicting connections located in highly congested regions sub-
stantially increases the resource expansions, and thus dominates
the runtime. To route a connection, an A* search beginning from the
source explores downhill resource nodes recursively until finding
the sink. The exploration prioritizes lower-cost nodes to improve
the optimality of the search path. When rerouting connections
within highly congested regions, the amount of visited nodes grows
exponentially for the purpose of circumventing overused nodes
and seeking a viable path. We will analyze quantitatively these
runtime bottlenecks in §4. However, previous works on FPGA rout-
ing acceleration hardly identify such a bottleneck and propose
corresponding optimizations.
Previous Routing Acceleration Approaches. Most published
attempts to speed up FPGA routing focus on parallelism, while
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others target serial algorithmic enhancements on the negotiated
congestion routing paradigm. We categorize these efforts into 1)
inter-connection1, and 2) intra-connection acceleration by the
routing granularity. Inter-connection routers [4, 6, 16, 24, 31] pro-
vide connection-level parallelism, usually distributing the rout-
ing task by partitioning the connections into conflict-free subsets;
these partitions are then routed independently and simultaneously.
While inter-connection routers can somewhat speed up the rout-
ing process, the frequent congested situations prevent the common
workload-partitioningmethods from being effective [17]. Such prob-
lems with load-balancing lead to limited scalability and massive
consumption of computing resources (threads or processor cores)
for a plain speedup. Unlike inter-connection acceleration, intra-
connection does not alter the processing order of connections. It
augments the path seeking between source and sink for each con-
nection. Existing intra-connection parallelism [12, 25] approaches
are much fewer than inter-connection ones and are not widely used,
due to high parallelism overhead and poor determinism [20]. Other
serial efforts are devoted to adjusting the cost settings [28, 31], or
renewing FPGA architectures [17, 21], which lack generality in
terms of actual designs or FPGA devices.
Motivation forAdaptiveBidirectional Exploration.The above
previous works rarely take connection-wise routing complexity
into account. To address the runtime hotspots when routing connec-
tions in highly congested device regions, we propose an adaptive
bidirectional exploration (BE) approach for intra-connection rout-
ing. Typical A* search, which is unidirectional from source to sink,
has dominated modern FPGA routers despite that incremental opti-
mizations of cost settings or parallelism are witnessed. However,
unidirectional exploration (UE) is not ideal when dealing with con-
gestion, because it tends to expand excessive resource nodes when
encountering a vast amount of overused nodes. BE has been proven
effective on other tasks such as route planning for robots or vehi-
cles [26, 27]. In this work, we develop BE intra-connection routing
that drives two search frontiers from both the source and the sink
with dedicated dual cost settings and pruning strategies. BE greatly
outperforms UE in congested conditions, since two frontiers meet-
ing halfway avoids lavish explorations of tempting but sub-optimal
paths. Nevertheless, UE behaves better at uncongested cases, where
the searched path is somewhat “straightforward” and UE stops
right after the search frontier arrives at the sink, while BE needs
to weigh in many possible source-sink paths. We will illustrate in
detail the above observations in §5.3. Accordingly, we design an
efficient connection-wise adaptive strategy to determine whether
to use BE or UE to route the current connection based on historical
search experiences. Note that our adaptive BE routing paradigm is
pluggable, i.e., programming and integrating it into commercial or
academic FPGA routers is seamless and effortless, but the speedup
is instant and surprising. When incorporated into inter-connection
parallel routers, adaptive BE overcomes their inherent workload-
balance problems and provides multiplied speedup, while being
orthogonal to their specific parallelism mechanisms.
Our Contributions.We summarize our contributions as below:

1Some works are net-based instead of connection-based, performing intra-net or inter-
net acceleration, where each net defines one source and one/multiple sink(s) (§2.2).
For simplicity, we do not differentiate the usage of these two concepts in this section.
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Figure 1: UltraScale+ architecture with columnar resources.
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Figure 2: Modeling an example FPGA routing circuitry as a
routing resource graph (RRG).

• We profile in depth the runtime of the modern FPGA routing
paradigm and discover that the bottleneck connections in con-
gested designs cause routing hotspots (§4).

• For the first time, we introduce the notion of bidirectional intra-
connection routing (§5.1) with lightweight serial and parallel
implementations (§5.2), and analyze its effectiveness with dedi-
cated case studies and statistical data (§5.3).

• We propose an adaptive switching strategy between BE and
UE for maximized performance under varied congestion situa-
tions (§6.1), and enable the seamless integration of adaptive BE
into inter-connection parallelism routers (§6.2).

• On the FPGA24 contest benchmark, AceRoute powered by se-
rial adaptive BE and 2-thread parallel BE achieve over 2.4× and
3.2× average speedup, respectively, compared with RWRoute
and Vivado, the open-source and industrial state of the art
routers (§7.1). AceRoute also amplifies the speedup (to RWRoute)
of a partition-based inter-connection parallel router from 2.2×
to 4.4× and 5.0× with serial adaptive BE and 2-thread parallel
BE, respectively (§7.2). The wirelength overheads incurred by
these acceleration techniques are minor.

2 PRELIMINARIES
2.1 FPGA Architecture and Representation
UltraScale+ Architecture. In this study we target AMD/Xilinx
Virtex UltraScale+ FPGAs, which feature a column-and-grid layout.
Figure 1 depicts the basic architectural elements. At an abstract level,
a device is created by assembling a grid of tiles of different types,
and tiles in the same column share a type. Each tile type defines
unique tile wires (TWires) totally contained within this tile, and
programmable interconnect points (PIPs) that provide configurable
connections between tile wires. A tile type also defines sites, and
a site includes a group of basic elements of logic (BELs) and their
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connectivity. A site can be connected to tile wires through site pins.
Common tile types include configurable logic block (CLB), block
RAM (BRAM), DSP, I/O bank, and interconnect (INT). INT tiles
are switch box tiles where most PIPs are present. The segmented
interconnect network spanning one ormultiple INT tiles is designed
for the optimal signal transportation among fabric resources such
as CLBs, DSPs, and BRAMs.
Routing Resource Graph and Task Formulation. Using rout-
ing resource graph (RRG) to represent FPGA device resources is a
common practice in FPGA routing. Figure 2 illustrates the mapping
of routing resources to an RRG. As the fundamental components
in an RRG, a node is a collection of electrically connected tile wires
(TWires) across one or more tiles, and an edge denotes a PIP or
a site. UltraScale+ FPGAs supply considerable routing resources.
For instance, the RRG of device xcvu3p consists of over 28 million
nodes and 125 million edges. The extensive scale of RRG introduces
unprecedented complexity to routing.

The routing task can be formulated as finding a routing tree of
RRG nodes for each net in the design such that 1) each tree connects
the net source and all the net sinks, and 2) no two trees contain
the same node. The optimization target depends on the routing
mode.Wirelength-driven routing aims to minimize wirelength for
a compact and potentially less power-consuming design, while
timing-driven routing prioritizes meeting timing requirements to
avoid signal propagation delays, often at the expense of longer
paths or more resources. We focus on wirelength-driven routing
in this work, though switching to timing-driven is convenient via
adjusting the costs specified in §2.2.

2.2 Negotiated Congestion Routing
PathFinder-Based Routing. FPGA routers are typically based on
the negotiated congestionmechanism introduced by PathFinder [11].
For all nets, the router iteratively tries to find disjoint routing trees
in the RRG. Historically, net-based rip-up-and-reroute proceeds un-
til no resource nodes are illegally shared in each iteration. Recent
high-performance routers are mostly connection-based [22, 23, 30,
31], splitting up each net into a set of source-sink connections and
routing the connections independently. Connection-based routers
are more efficient because only congested connections are rerouted
instead of all nets. A resource node can be shared by multiple
connections only if these connections belong to the same net or,
equivalently, have the same source.

To eliminate congestion andminimize thewirelength, negotiated-
congestion-based routers employ the congestion cost function𝐶𝑡𝑜𝑡𝑎𝑙
of a given node 𝑛 when routing each connection:

𝐶𝑡𝑜𝑡𝑎𝑙 (𝑛) = 𝐶𝑝𝑟𝑒𝑣 (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛) +𝐶𝑛𝑜𝑑𝑒 (𝑛) +𝐶𝑒𝑥𝑝 (𝑛, 𝑠𝑖𝑛𝑘) (1)

where 𝐶𝑛𝑜𝑑𝑒 (𝑛) =
𝑏 (𝑛) · 𝑝 (𝑛) · ℎ(𝑛)
1 + 𝑠ℎ𝑎𝑟𝑒 (𝑛)

The node cost 𝐶𝑛𝑜𝑑𝑒 (𝑛) involves the base cost 𝑏 (𝑛) for wire-
length, the present and historical congestion cost 𝑝 (𝑛) andℎ(𝑛) that
penalize the sharing of 𝑛 by multiple connections, and the sharing
factor 𝑠ℎ𝑎𝑟𝑒 (𝑛) for the number of connections in the same net that
share this node. The design of𝐶𝑛𝑜𝑑𝑒 (𝑛) allows connections to share
resources initially and gradually increases the penalty for resource
overuse in later iterations. The upstream path cost𝐶𝑝𝑟𝑒𝑣 (𝑠𝑜𝑢𝑟𝑐𝑒, 𝑛)
accumulates the node cost of nodes along the search path from the

source, while the expected wirelength cost 𝐶𝑒𝑥𝑝 (𝑛, 𝑠𝑖𝑛𝑘) estimates
the downstream cost, basically related to the Manhattan distance
between 𝑛 and the sink.
Intra-Connection A* Search Given the above cost settings, each
connection is routed with A* search [5]. Compared with breadth-
first search (BFS), A* is the so-called best-first search that selects
the most promising neighboring node for expansion, typically im-
plemented with a priority queue. Each node 𝑢 is ranked with an
evaluation function2 𝑓 (𝑢) = 𝑔(𝑢) + 𝑒 (𝑢), where 𝑔(𝑢) denotes the
shortest path found so far from the source to 𝑢, and 𝑒 (𝑢) is the
heuristic function for the path length from 𝑢 to the target. The
heuristic function 𝑒 (𝑢) is said to be admissible if it never overesti-
mates the actual cost from 𝑢 to the target, which guarantees the
optimal solution. Typically, an A* search is unidirectional, starting
from the source and terminating when reaching the target.

3 EXPERIMENTAL SETUP
This section describes the general experimental setup applied to all
the experiments in the subsequent sections. As mentioned in §2.1,
we target AMD/Xilinx Virtex UltraScale+ FPGAs in this study.
Environment. We perform all experiments on an Ubuntu 22.04
LTS server with a 48-core (96-thread) Intel Xeon Platinum 8488C
CPU and 768GB DDR4 RAM.
Baselines. For serial FPGA router baselines, we select Vivado
v2023.1 [2] and RWRoute [30], the commercial and academic rep-
resentatives compatible with the latest FPGA architectures like
UltraScale+. RWRoute is an open-source negotiated-congestion-
based router provided by Java-based RapidWright [10].
AceRoute Implementation.We first implement a basic serial ver-
sion with C++ from scratch, on the foundation of RWRoute. Then
we revolutionize it based on our proposed serial and parallel bidi-
rectional enhancements. AceRoute also supports inter-connection
parallelism based on net bi-partition [16], a common partition-
based scheme. We utilize C++ std::thread and Taskflow [7] for intra-
and inter-connection parallelism, respectively. AceRoute contains
∼6000 lines of code excluding third parties.
Benchmarks. We use FPGA24 routing contest benchmarks [8] to
evaluate all the routers. The benchmark contains a series of pre-
placed and partially routed (clock and power nets) physical netlists.
The benchmark suite has two parts: public and hidden. Due to the
large amount of designs, we utilize the designs in the public part
while removing 2 smallest ones from it, and adding the 3 largest
ones from the hidden part, for the evaluations in this paper.
Runtime Statistics. We use wall clock time to assess routing per-
formance. Each routing time reported in experiments will not in-
clude the time to load device resources or read/write the netlist for
better comparison, though AceRoute achieves similar data I/O effi-
ciency with Vivado or RWRoute via plentiful engineering efforts.

4 RUNTIME BREAKDOWN AND PROFILING
In this section, we analyze the runtime properties and bottlenecks of
connection-based negotiated congestion routing. Observations and
conclusions here set the stage for our next methods. We conduct

2In FPGA routing, the total cost 𝑓 (𝑢) = 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑢) , the actual cost 𝑔 (𝑢) =

𝐶𝑝𝑟𝑒𝑣 (𝑠𝑜𝑢𝑟𝑐𝑒,𝑢) +𝐶𝑛𝑜𝑑𝑒 (𝑢) , and the estimated cost 𝑒 (𝑢) = 𝐶𝑒𝑥𝑝 (𝑢, 𝑠𝑖𝑛𝑘) .
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Figure 3: Runtime breakdown of the routing process and the
corresponding numbers of heap pushes and pops.

the experiments in this section with the basic serial UE version of
AceRoute on the FPGA24 public benchmark.

4.1 Runtime Proportion and Performance
Indicator of Intra-Connection Routing

To demonstrate the necessity of accelerating intra-connection rout-
ing and the correlation between resource expansions and routing
runtime, we measure the runtime breakdown of each routing stage
and the number of heap operations in the whole routing process.

As shown in Figure 3, for each design, we break down the rout-
ing process into 5 stages, including data read/write, initialization of
connections, intra-connection routing, cost updating between iter-
ations, and post-processing. Accompanied is the number of nodes
pushed or popped to/from the heap, shown in the blue bars with
data aligned to the top blue axis. We obtain two conclusions from
the results. 1) It is evident that intra-connection routing takes up
the majority of routing runtime, with an average 83.7% across all
designs, since it is the core of connection-based routing. 2) Heap
pushes and pops are strongly correlated to the actual runtime of
intra-connection routing. The nature of A*-based algorithms deter-
mines that heap operations are good indicators of search efficiency.

4.2 Quantifying Routing Bottlenecks
Since conflicting connections are ripped up and rerouted in each
routing iteration, what connections consume most of the runtime?
Now we conclude that 1) bottleneck connections in 2) congested
designs drive the runtime up. For 1), we define bottleneck con-
nections as those that take more than 1𝑚𝑠 to route in an arbitrary
routing iteration. In practice, they are difficult to route with large
amounts of resource expansions. The impact of bottleneck connec-
tions is muchmore prominent in 2) congested designs, where higher
congestion is more prevalent and each bottleneck connection is
harder to handle.

In Figure 4, we demonstrate the effect of bottleneck connections
under two different levels of congestion. For both design (a) and (b),
bottleneck connections constitute a rather small portion of the total
until the very last routing iterations. But when it comes to runtime

(a) Uncongested Design
(koios_dla_like_large)

(b) Congested Design
(vtr_mcml)

Figure 4: Impact of bottleneck connections (conns) on run-
time under different levels of congestion.

impact, the distinctions are clear. For (a), the runtime contribution
of bottleneck connections remains low until the several unresolved
connections in the final routing stage. For (b), bottleneck connec-
tions introduce significant runtime overhead as routing proceeds,
even if they are the minority of all connections. In the next section,
we will introduce our BE intra-connection routing approach to
address bottleneck connections and speed up the routing.

5 BIDIRECTIONAL EXPLORATION
In view of the runtime profiling results and analysis in the last
section, we now propose bidirectional intra-connection routing. We
first introduce the strategic details of the algorithm design in §5.1,
and then describe an efficient implementation of the parallel version
in §5.2. Finally, in §5.3, we experimentally analyze the performance
variance of BE and UE under different levels of congestion.

5.1 Algorithm Design
We develop our BE-based intra-connection routing inspired by pre-
vious works on bidirectional A* algorithm [13–15, 19]. BE executes
two search processes simultaneously: one forward process from the
source and the other backward process from the sink. BE does not
necessarily run in parallel; we present a serial version alternating
the execution of each search process, together with a parallel one
in §5.2. In the backward process, a reverse RRG is created, where
each PIP or site edge is reversed.

Given the symmetry of two search processes, we demonstrate
the algorithm with one side and denote every variable on the other
with a bar. 𝑠 , 𝐶 , 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 , and 𝑝𝑎𝑟𝑒𝑛𝑡 denote the source, cost, visited
flag, and node parent of the opposite search, respectively. The
execution of BE stops when one process stops. Algorithm 1 gives
the explicit BE algorithm viewed by one process. To restrict hopeless
node expansions, BE uses a read/write variable L shared by both
processes, which saves the best path cost found so far.L is employed
in the pruning criteria (Line 13) together with 𝐶∗, the lowest total
cost of nodes on the search frontier.
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Compared with classic bidirectional A*, our BE routing in Al-
gorithm 1 modifies node labeling and heuristic function to bal-
ance both searching efficiency and wirelength. In fact, many FPGA
routers make similar adjustments to unidirectional A*. Such modifi-
cations reduce node expansions with compromised optimality. For
example, a node can only be visited once in our approach, while
in traditional A* it may be expanded multiple times. The expected
downstream cost 𝐶𝑒𝑥𝑝 is multiplied by a directedness factor that
determines how aggressively the router explores toward the sink.
Larger directedness improves runtime but may result in suboptimal
routes since admissibility may not be satisfied. A suitable directness
value will not introduce a noticeable reduction in result quality.

Algorithm 1: BE of One Search Process
Input: RRG𝐺 = (𝑉 , 𝐸) with source 𝑠 and sink 𝑠 .
Output: A source-sink path (𝑠,𝑢1, . . . ,𝑢𝑛, 𝑠) .

1 L = ∞; // The best path cost
2 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑁𝑈𝐿𝐿; // Internal node in the result path
3 foreach 𝑣 ∈ 𝑉 do
4 𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑣) = ∞;
5 𝑣.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑓 𝑎𝑙𝑠𝑒 ;
6 𝑠.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒 ;
7 𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑠) = 0;
8 𝐶∗ = 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑠) ; // The lowest cost of nodes on search frontier
9 𝑄 = priority_queue() ; // Prioritize lower𝐶𝑡𝑜𝑡𝑎𝑙 (𝑣), 𝑣 ∈ 𝑉

10 𝑄 .push(𝑠);
11 while not𝑄 .empty() do
12 𝑢 = 𝑄 .pop();
13 if 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑢) ≥ L or𝐶𝑝𝑟𝑒𝑣 (𝑠,𝑢) +𝐶∗ −𝐶𝑒𝑥𝑝 (𝑢, 𝑡 ) ≥ L then
14 continue;
15 𝑢𝑝_𝑐𝑜𝑠𝑡 = min(𝐶𝑝𝑟𝑒𝑣 (𝑠,𝑢) ,𝐶𝑝𝑟𝑒𝑣 (𝑠,𝑢.𝑝𝑎𝑟𝑒𝑛𝑡 ) +𝐶𝑛𝑜𝑑𝑒 (𝑢));
16 foreach (𝑢, 𝑣) ∈ 𝐸 do
17 if 𝑣.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 == 𝑡𝑟𝑢𝑒 then continue;
18 𝑣.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 = 𝑡𝑟𝑢𝑒 ;
19 𝑣.𝑝𝑎𝑟𝑒𝑛𝑡 = 𝑢;
20 𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑣) = 𝑢𝑝_𝑐𝑜𝑠𝑡 ;
21 𝑄 .push(𝑣);
22 if 𝑣.𝑣𝑖𝑠𝑖𝑡𝑒𝑑 == 𝑡𝑟𝑢𝑒 then
23 if 𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑣) +𝐶𝑝𝑟𝑒𝑣 (𝑡, 𝑣) +𝐶𝑛𝑜𝑑𝑒 (𝑣) < L then
24 L = 𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑣) +𝐶𝑝𝑟𝑒𝑣 (𝑠, 𝑣) +𝐶𝑛𝑜𝑑𝑒 (𝑣) ;
25 𝑉𝑟𝑒𝑠𝑢𝑙𝑡 = 𝑣;

26 𝐶∗ = 𝐶𝑡𝑜𝑡𝑎𝑙 (𝑄.top()) ;
27 Restore and return the best 𝑠−𝑡 path with𝑉𝑟𝑒𝑠𝑢𝑙𝑡 ,𝑉𝑟𝑒𝑠𝑢𝑙𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡 ,

and𝑉𝑟𝑒𝑠𝑢𝑙𝑡 .𝑝𝑎𝑟𝑒𝑛𝑡 recursively;

5.2 Parallel Implementation
Our parallel BE is built upon the notion in §5.1 but tailored for
multi-threaded execution with shared memory. We parallelize the
forward and backward searches instead of interleaving them. The
need for mutual exclusion is small since most variables are written
only by one search side, lowering the parallelism overhead.

As shown in Figure 5, we use two threads for forward and back-
ward searches respectively to route each connection. Each thread
maintains a local priority queue. Two barriers are set to synchronize

1st Barrier

2nd Barrier

Save the route of 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑖]

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖
is congested? 

YES
NO

𝑖++

Rip up 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑖], Initialize local 
queue and other variables of both threads

Local queue 
is empty? 

Push and pop nodes from local queue

Notify Notify

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[𝑖]

𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠[0 ∶ 	𝑛 − 1]

Thread 1 (forward)

Thread 2 (backward)

Push and pop nodes from local queue

Figure 5: Parallel BE routing with 2 threads.

the execution of the two threads: the backward thread waits until
the forward thread finishes saving the routing of the last connection
and initializing the next one to route, and then both threads route
the same connection concurrently until one of them terminates
with the result path. In this way, two threads are reused for each
connection without the expensive joining and creating. Parallel BE
is not deterministic because the scheduling of two search threads is
random, and intra-connection routing does not promise optimality.

5.3 Is Bi-Directional Always More Efficient?
The different natures of BE and UE imply that each one of themmay
outperform the other under some circumstances. Here we inspect
the root cause of the distinctions through elaborate experiments. To
guarantee the fairness of comparison, we ensure that each connec-
tion is routed with either UE or BE given the same routing status.
Specifically, we modify the common routing procedure as below:
• In each routing iteration, unrouted or conflicting connections
are ripped up and routed one by one in a given order.

• For each connection to route:
– Route it with BE, record the statistics.
– Undo the route, i.e., discard the intermediate results and
the searched path produced by BE.

– Route it with UE, record the statistics.
In this way, we restrict UE and BE to route each connection

based on the same routing checkpoint. This procedure is the basis
of the following two experiments.
Exp I: Case Study of a Single Connection. To visualize the per-
formance variations between UE and BE at different routing stages
or degrees of congestion, we compare the resource expansions and
runtime of routing a single connection with UE or BE at both an
initial and a later routing iteration. As shown in Figure 6, we use
connection 32221 routed in iteration 1 and 3 from design vtr_mcml
for illustration. In this specific case, it happens that UE and BE find
the same path in both iteration 1 and 3. We compare the exploration
overhead of UE and BE in these two iterations, respectively. 1) In
the first routing iteration, both UE and BE visit limited nodes, when
the node cost does not penalize a lot on overuses and congestion is
rare to be found. However, BE tends to pop more nodes from the
heap than UE, as it tries to find multiple plausible paths and choose
the best one, while UE stops once reaching the sink. 2) In iteration 3,
with the increasing congestion, BE explores much fewer nodes than
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Source

Sink

# Nodes Pushed: 121
# Nodes Popped: 37
# Nodes Routed: 17
Route Time: 0.009 ms

UE @ Conn 32221, Iter 1
Source

Sink

# Nodes Pushed: 174
# Nodes Popped: 115
# Nodes Routed: 17
Route Time: 0.023 ms

BE @ Conn 32221, Iter 1
Source

Sink

# Nodes Pushed: 1057
# Nodes Popped: 336
# Nodes Routed: 17
Route Time: 0.116 ms

UE @ Conn 32221, Iter 3
Source

Sink

# Nodes Pushed: 122
# Nodes Popped: 82
# Nodes Routed: 17
Route Time: 0.017 ms

BE @ Conn 32221, Iter 3

Nodes Pushed
Nodes Popped
Nodes Routed

Figure 6: Comparison of routing a specific connection with UE/BE at different routing stages. Each node (wire) is positioned
at the tile it ends. The larger dot denotes more nodes expanded at the same tile position.
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Figure 7: Runtime comparison between UE and BE on the
same designs in Figure 4 with different levels of congestion.

UE. UE performs numerous wasteful expansions before reaching
the sink, because the high-cost nodes around the sink drive the
searching frontier to explore misleading directions. In contrast, BE
efficiently seeks the same path as two searching frontiers head
towards each other. Here the number of expansions is too small to
indicate a bottleneck connection, yet it is suitable for visualization.
In many cases, UE can explore thousands of times more nodes than
BE in congested situations.
Exp II: Overall Effect of Congestion on UE and BE. Figure 7
provides a comprehensive comparison between UE and BE with
different levels of congestion using the same two designs as Figure 4
in §4.2. For the uncongested design (a), UE is even more efficient
than BE throughout the routing process. For (b), BE performs worse
in the beginning routing iterations but surpasses UE greatly in the
following iterations when the congestion cases arise. We can ob-
serve that the efficacy of BE and UE is associated with the impact of
bottleneck connections on runtime. In design (a) and the beginning
iterations of (b), routing bottleneck connections is not the major
runtime composition, and UE is more advantageous, while later
iterations in (b) witness the dominance of bottleneck connections
and the lead of BE.
Conclusions Drawn from the Observations. BE is a better can-
didate for intra-connection routing in congested conditions when
bottleneck connections make up the majority of runtime, while UE
is better at uncongested cases.

6 ADAPTIVE ROUTING ENHANCEMENT
To overcome the disadvantage of BE when routing non-bottleneck
connections andmaximize the performance of UE and BE, we design
an adaptive strategy for intra-connection routing mode selection

in §6.1. Then we elaborate on the seamless integration of our plug-
gable intra-connection routing approaches with inter-connection
parallelism in §6.2.

6.1 Adaptive Intra-Connection Routing
We propose the adaptive intra-connection routing in view of the
observations and conclusions in §5.3. The key is to put forward an
accurate, robust, and compute-efficient metric that estimates whether
BE or UE will perform better on a given connection. It is natural
to predict the overall congestion condition the connection may
undergo before routing it. Recent works on FPGA routing conges-
tion prediction [1, 18, 29] forecast the regional congestion in the
coming routing stage, mostly via vision-based machine learning
(ML) models. However, these techniques provide coarse-grained,
once-and-for-all congestion prediction on the FPGA device, while
we require online, connection-level prediction in each routing iter-
ation. Additionally, ML-based inferences may incur considerable
computational cost and can be biased with new data in our scenario.
In practice, we discover that estimating the difficulty to route the
next connection by extracting relevant congestion features (e.g.,
HPWL, density of overused nodes) exhibits large uncertainty and
computational overhead.

Instead of adhering to congestion features, we propose a simple
yet effective adaptive metric that considers the connection’s routing
history in previous iterations. From the previous analytical exper-
iments, we observe that 1) the impact of bottleneck connections
in beginning iterations tends to be small, and 2) if a connection is
ripped up and rerouted in multiple iterations, the resource expan-
sions and runtime tend to grow chronologically. The observation
1) is illustrated in Figure 4, and 2) is reasonable since congestion
rises with routing proceeded. Such empirical conclusions aid us to
design the following adaptive routing procedure:

• In the 1st iteration, route all connections with UE.
• In later iterations, for each connection 𝑐𝑜𝑛𝑛 to route:

– If 𝑐𝑜𝑛𝑛 became bottleneck connection (i.e., routing time
> 1𝑚𝑠) in the last iteration it was routed, route 𝑐𝑜𝑛𝑛 with
BE in this and later iterations.

– Otherwise, route 𝑐𝑜𝑛𝑛 with UE.

In this way, we replace the dubious congestion prediction with a
posterior, experience-based metric. Now our adaptive routing can
effortlessly judge the exploration mode at connection level.
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Table 1: Runtime and speedup of AceRoute with different intra-connection routing configurations, in respect to the baseline
routers RWRoute and Vivado. The speedup and the average normalized runtime are relative to RWRoute. The designs are
sorted by their routing time of RWRoute in ascending order.

RWRoute Vivado Ours-Basic (Serial) Ours-BE (Serial) Ours-BE (2-thread) Ours-Adapt (Serial)
Time (s) Time (s) Speedup Time (s) Speedup Time (s) Speedup Time (s) Runtime Var. Speedup Time (s) Speedup

corescore_500 134.8 217.0 0.62× 107.1 1.26× 105.2 1.28× 69.7 (-4.2%, +1.6%) 1.93× 101.9 1.32×
rosetta_fd 150.7 153.3 0.98× 109.3 1.38× 80.6 1.87× 50.4 (-3.2%, +5.2%) 2.99× 81.1 1.86×
vtr_lu64peeng 192.8 216.5 0.89× 168.1 1.15× 147.9 1.30× 91.9 (-4.1%, +3.4%) 2.10× 137.8 1.40×
corundum_25g 230.2 —— —— 187.0 1.24× 162.1 1.42× 106.8 (-6.9%, +12.3%) 2.16× 154.5 1.49×
vtr_mcml 235.3 469.2 0.50× 198.0 1.18× 77.0 3.06× 49.7 (-5.6%, +9.9%) 4.73× 72.6 3.24×
boom_med_pb 241.3 200.4 1.20× 185.7 1.31× 121.7 1.98× 82.6 (-8.2%, +9.1%) 2.92× 98.4 2.45×
corescore_500_pb 267.3 337.0 0.79× 203.2 1.32× 154.6 1.73× 106.5 (-4.8%, +14.6%) 2.51× 153.7 1.74×
koios_dla_large 322.7 665.0 0.49× 240.7 1.34× 311.1 1.04× 173.0 (-5.6%, +5.5%) 1.87× 237.4 1.36×
ispd16_example2 545.6 596.2 0.92× 411.6 1.32× 440.4 1.24× 338.2 (-4.7%, +6.2%) 1.61× 381.8 1.43×
boom_soc 1416.1 1026.1 1.38× 984.8 1.44× 749.8 1.89× 620.5 (-15.6%, +20.3%) 2.28× 647.5 2.19×
corescore_1700 1572.3 1100.2 1.43× 1097.3 1.42× 604.3 2.60× 447.6 (-2.7%, +4.4%) 3.51× 612.1 2.57×
mlcad_d181_left... 2008.5 878.4 2.29× 622.7 3.22× 393.6 5.10× 283.4 (-5.8%, +8.2%) 7.09× 375.2 5.35×
mlcad_d181 4555.1 4028.7 1.13× 5111.1 0.90× 980.3 4.65× 882.9 (-6.2%, +6.4%) 5.16× 954.5 4.77×
boom_soc_v2 5869.7 2024.6 2.90× 3866.1 1.52× 1504.7 3.90× 1135.2 (-6.3%, +10.1%) 5.17× 1344.2 4.37×
Average 1.000 1.080 1.19× 0.754 1.43× 0.539 2.36× 0.368 (-6.0%, +8.4%) 3.29× 0.491 2.55×
*We run the BE (2-thread) router for 8 times, recording the mean time and the variation range relative to the mean of 8 runs. Other deterministic routers are averaged with 3 runs.
**Vivado aborts when routing corundum_25g due to DRC errors.

6.2 Inter-Connection Parallelism Integration
Due to the orthogonality to connection ordering, our adaptive
intra-connection routing scheme can be smoothly integrated into
existing inter-connection parallel routers. Furthermore, the adap-
tive routing augments typical partition-based parallelism. Current
parallel routers suffer from the problem of load balance. The work-
load assigned to each process or thread is inevitably unbalanced,
considering the uneven distribution of congestion. In a device re-
gion of high connection density, partitioning the connections into
disjoint sets is almost impossible. Traditional UE-based routing
is prone to congestion, causing inequality among the partitions
with different levels of bottleneck connections. On the contrary,
our adaptive routing handles bottleneck and non-bottleneck con-
nections using BE and UE respectively with close runtime, which
flattens the workload among different connection groups.

We implement recursive bi-partitioning [4, 16], a common inter-
connection parallelism scheme. The device region is divided into
two sub-regions with a median cutline. This creates three sub-
groups of connections: 1) connections entirely in the first sub-
region, 2) connections entirely in the second sub-region, and 3)
connections across the two sub-regions. The first two sub-groups
are independent and can be routed in parallel, while the third group
is then routed sequentially. These steps can be repeated recur-
sively for more parallelism. However, the poor scalability restricts
the speedup since groups 1) and 2) contain fewer connections in
deeper partitions, while 3) may include many bottleneck connec-
tions. Adaptive routing can alleviate this imbalance and provide
extra speedup for recursive bi-partitioning.

7 EXPERIMENTS
The general experimental setup has been presented in §3, while
some details will be further clarified in this section. §7.1 evaluates
the performance of AceRoute by comparisons with RWRoute [30]

and Vivado [2]. In §7.2, we measure the acceleration when integrat-
ing inter-connection parallelism with intra-connection approaches.

7.1 Intra-Connection Routing Optimizations
As for intra-connection routing, we evaluate AceRoute of the fol-
lowing configurations: 1) Basic, PathFinder-based version with UE
and serial implementation, 2) BE (Serial), implementing serial BE
for all connections (§5.1), 3) BE (2-thread), the parallel version
of 2) with simply 2 threads (§5.2), and 4) Adapt (Serial) with our
adaptive strategy to switch between serial BE and UE (§6.1). Note
that we do not evaluate the adaptive version with parallel BE be-
cause it will always run slower than 3) considering that the worst
case for 2-thread BE is UE for each connection, and thus, we focus
on the serial adaptive implementation with determinism.

Table 1 displays the runtime and speedup results of RWRoute,
Vivado, and our router of different configurations. The speedup
is relative to RWRoute, and the bottom row specifies the average
of normalized runtime and speedup with RWRoute. The rows are
sorted by the RWRoute runtime. Since the BE (2-thread) version
does not guarantee determinism, we run it for 8 times indepen-
dently, recording its runtime with the mean value and the range of
variation relative to the mean. All other configurations are serial
and promise determinism. Additionally, Table 2 summarizes the
normalized critical-path wirelength with RWRoute, with the min,
max, and mean values among all the designs in the benchmark. For
BE (2-thread), the results are averaged among multiple runs.

Results in Table 1 and Table 2 demonstrate that our renewed intra-
connection routing techniques achieve significant acceleration with
minor wirelength overheads. Our baseline routers, RWRoute and
Vivado, show similar performance over the benchmark. Our basic
router has a slight runtime gain compared with RWRoute, which
is not essential and mainly attributed to the language shift from
Java to C++ given the similar algorithm framework. For pure BE
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intra-connection routing, the serial and 2-thread parallel implemen-
tations exhibit an average 2.36× and 3.29× speedup, respectively.
The efficient 2-thread implementation of parallel BE introduces little
parallelism overhead and acceptable fluctuations of runtime among
multiple runs. For some designs insensitive to bottleneck connec-
tions, e.g., ispd16_example2 and koios_dla_large, the runtime
of serial BE deteriorates in regard to the basic UE version. Our
serial adaptive intra-connection router achieves 2.55× and 2.48×
speedup on average, compared with RWRoute and Vivado, respec-
tively. The adaptive router improves the serial BE router with up
to 25% runtime reduction on koios_dla_large, and an average
10% runtime reduction over all designs. Furthermore, the results
highlight the scalability of AceRoute given that the speedup of BE
(2-thread) and adaptive routing generally becomes more prominent
on complex designs that take more time to route with RWRoute.
The underlying reason could be the heavier congestion and larger
impact of bottleneck connections in these designs.

Table 2: Critical-pathwirelength normalizedwith RWRoute
across all designs (min/max/mean) for different routers.

Min Max Mean

Base Routers RWRoute 1.00 1.00 1.00
Vivado 0.83 1.51 1.12

Intra-Connection Opt.
Only

Basic 0.91 1.23 1.03
BE (Serial) 0.82 1.26 1.02

BE (2-thread) 0.89 1.62 1.08
Adaptive 0.92 1.25 1.04

Inter-Connection Par.
× Intra-Connection Opt.

Basic 0.83 1.64 1.03
BE (2-thread) 0.90 1.26 1.04
Adaptive 0.82 1.27 1.01

7.2 Enhanced Inter-Connection Parallelism
To verify the extra performance gain over inter-connection paral-
lelism brought by our intra-connection optimizations, we integrate
our 1) basic, serial, 2) BE (2-thread), and 3) serial adaptive ap-
proaches into an inter-connection parallel routing framework based
on recursive bi-partition. Table 3 shows the speedup results relative
to RWRoute. The recursive bi-partition parallel routing is deter-
ministic since the order of connections to route is predetermined.
Like Table 1, only BE (2-thread) enhanced routing compromises
determinism and is evaluated with 8 independent runs. We use 9
threads for bi-partition-based routing as its mechanism requires 3𝑛
parallelism. The theoretically maximum thread utilization is thus
18 with BE (2-thread), and 9 for basic and adaptive routing.

BE (2-thread) and adaptive routing drive the bi-partition speedup
from 2.22× to 5.01× and 4.36× on average, respectively. Bi-partition
parallelism suffers from complex designs with numerous conflicting
connections. On mlcad_d181_lefttwo3rds, the original partition-
based parallelism is even slower than the serial version, with a
speedup of 1.59× in contrast to 3.22×. Once BE (2-thread) or adap-
tive techniques are plugged in, the speedup rises to 9.80× and
10.23×, respectively. The overall performance of intra-connection
serial adaptive routing is close to the 2-thread BE, demonstrating
the capacity of our adaptive strategy to boost inter-connection
parallel routers.

Table 3: Accelerated inter-connection parallelism by intra-
connection optimizations, with speedup over RWRoute.

.
Bi-partition Par. × Basic BE (2-thread) Adapt

Speedup Runtime Var. Speedup Speedup
corescore_500 2.86× (-4.3%, +3.8%) 3.65× 2.93×
rosetta_fd 1.46× (-3.6%, +4.1%) 3.61× 2.77×
vtr_lu64peeng 2.45× (-8.8%, +7.7%) 3.53× 2.74×
corundum_25g 1.90× (-1.3%, +3.8%) 2.75× 2.21×
vtr_mcml 2.25× (-4.0%, +5.8%) 7.17× 5.23×
boom_med_pb 1.41× (-5.8%, +9.1%) 3.48× 2.87×
corescore_500_pb 2.57× (-12.0%, +8.3%) 4.11× 3.47×
koios_dla_large 3.57× (-1.1%, +1.4%) 4.25× 3.31×
ispd16_example2 3.01× (-6.4%, +12.7%) 2.61× 2.63×
boom_soc 1.61× (-11.7%, +10.8%) 3.93× 3.74×
corescore_1700 3.26× (-3.5%, +3.9%) 8.02× 6.64×
mlcad_d181_left... 1.59× (-6.1%, +5.5%) 9.80× 10.23×
mlcad_d181 1.23× (-8.0%, +11.8%) 6.13× 6.09×
boom_soc_v2 1.94× (-5.8%, +4.7%) 6.90× 6.19×
Average 2.22× (-5.9%, +6.7%) 5.01× 4.36×
*Like Table 1, BE (2-thread) integrated router has 8 runs, and others 3 runs..

8 CONCLUSION
In this work, we first point out the two levels of granularity in main-
stream FPGA routing: intra-connection and inter-connection. We
profile this routing paradigm in depth and discover that resolving
bottleneck connections in congested designs dominates the run-
time. To mitigate the resource expansions and reduce routing time,
we revolutionize the classical A*-based intra-connection routing
with bidirectional path exploration for the first time. Neverthe-
less, through dedicated case studies, we observe that unidirectional
intra-connection routing prevails in uncongested conditions. Ac-
cordingly, we propose a simple yet effective adaptive strategy for
real-time exploration mode determination of a connection based on
its routing time in previous iterations. Moreover, the pluggability of
our approach allows flexible and effortless integration of adaptive
bidirectional search into existing FPGA routing frameworks.

The experimental results demonstrate a significant speedup of
AceRoute over established academic and industrial routers on vari-
ous designs with different sizes and complexity. Furthermore, intra-
connection adaptive bidirectional exploration overcomes the de-
ficiencies of inter-connection parallel routers and magnifies their
performance after integration. This work represents a remarkable
step forward in FPGA routing acceleration, offering both theoret-
ical insights and practical solutions for tackling the challenge of
FPGA routing in large, congested designs. Our future work includes
developing efficient deterministic parallel bidirectional strategies,
improving the dual cost design in bidirectional search with better
awareness of FPGA architecture, and optimizing the adaptivity for
robuster routing mode selection.
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