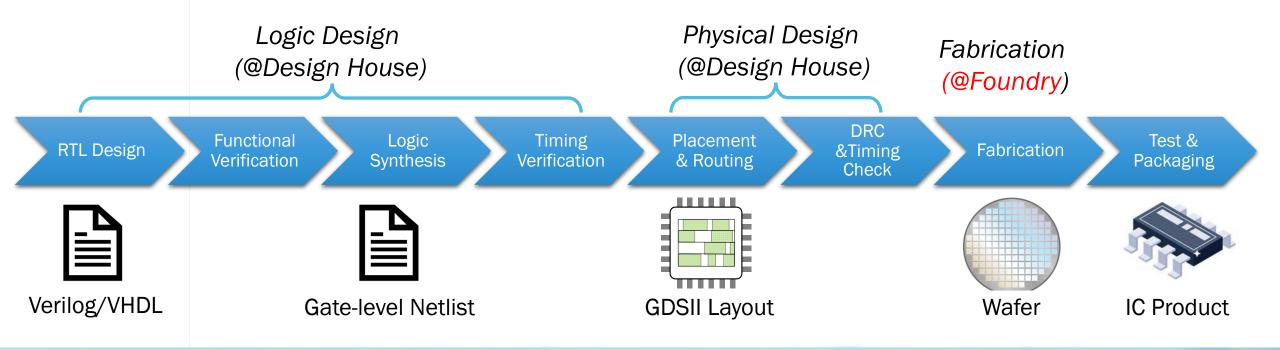


â

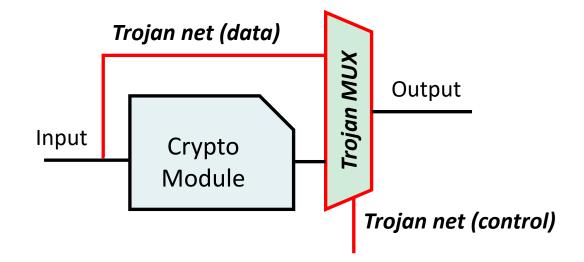

Xinming Wei, Jiaxi Zhang, Guojie Luo

Peking University

Fabrication-Time Trojan Attacks

IC design flows are mostly Fabless

o Should the foundry be trusted?



Fabrication-Time Trojan Attacks

Hardware Trojan effects

- Functional change, error injection, or system failure
- Performance degradation
- Leakage of sensitive information

0

Challenges in Trojan Defenses

Post-Silicon detection-based defenses

- Logic test
- Side-channel detections

Limitations

Low Reliability

• Stealthy Trojans have small footprint

Low Testability

• Stealthy Trojans are only triggered by rare events Unpatchability

• No remedy for vulnerabilities detected in ICs after manufacturing

Challenges in Trojan Defenses

Security-by-Design defenses

• Layout density increasing: ICAS [T. Trippel et al., S&P'20]

 Layout filling with independent logic: BISA [K. Xiao et al., HOST'13], [P. Ba et al., ISVLSI'16]

Limitations

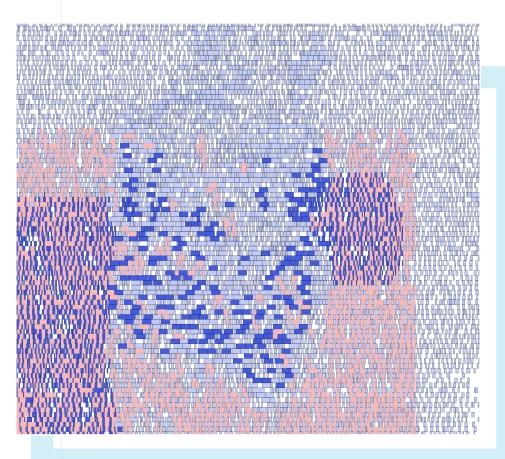
Low Reliability

• Cannot provide complete confidence against diverse Trojan attacks.

PPA-Agnostic

• Design overheads brought by defenses are not explicitly demonstrated

GDSII-Guard: Timing-aware ECO Enhancement


Post-layout ECO enhancement against fabrication-time Trojans

Minimized design performance, power, and DRC overheads

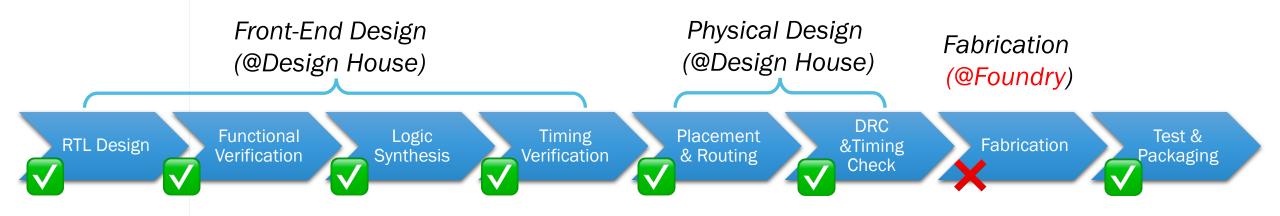
Significant security improvement with modest costs

Security Metrics

Exploitable Regions*

- Free placement sites
- Free routing tracks

*J. Knechtel et al., "Benchmarking security closure of physical layouts: ISPD 2022 contest," in ISPD, 2022.



Threat Model

Focus on fabrication-time Trojans, assuming all other phases are trusted
 Attackers can inject additive Trojans

No resizing, shifting, or removing existing instances

Attackers cannot extend the metal layers or the size of the layout

Problem Formulation

Input: L_{base} , security-critical assets list, timing specificationsOutput: $L_{opt} = f(L_{base}; x)$ Objective:minSecurity(L_{opt})min-TNS(L_{opt})s.t.DRC_viol(L_{opt}) $\leq N_{DRC}$ Power(L_{opt}) $\leq \beta_{power} \cdot Power(L_{base})$

L: Layout

 $f(\cdot; x)$: GDSII-Guard flow with param. config x,

Security(\cdot): Normalized free sites/tracks by original layout (to minimize)

Framework Overview

GDS2Guard Param. Space Preprocessing Param. Set Offspring Parent **Anti-Trojan ECO-Place** Set Set Local **Cell Shift** Density **Crossover & Mutation** Adjustment **Anti-Trojan ECO-Route Routing Width Scaling** Selection No Security, timing, DRC, **Metric Set** Converge? power, etc.Yes **Pareto-Optimal Designs**

GDS2Guard ECO Flow

Flow Parameter Tuning

- Explore security-timing trade-offs
- ✓ Return Pareto-Optimal designs

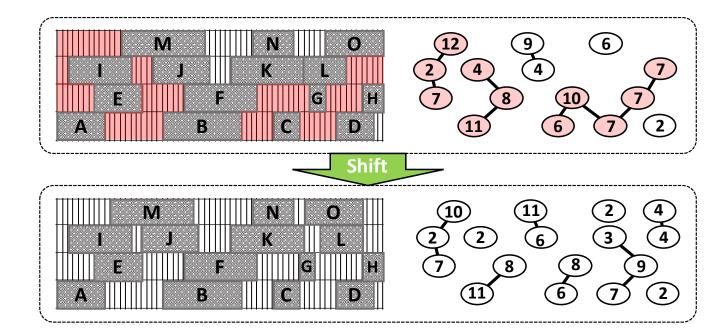
10

placement operators

ECO P&R Flow

✓ Two alternative ECO

- ✓ One ECO routing operator
- ✓ Return a set of design metrics



Anti-Trojan ECO P&R

Placement: <u>Cell Shift</u>

Algorithm takeaways

- Objective: Eliminate exploitable regions with minimized moving distances
- Graph modeling of empty regions
 Croody boost
- ✓ Greedy-based
- Row-wise manner

Anti-Trojan ECO P&R

Placement: <u>Dynamic Local Density Adjustment</u>

- Algorithm takeaways
 - ✓ Designed for low-density layouts
 - "Kick" empty spaces away from security-critical assets
 - ✓ Divide layout into tiles, manages local density of tiles w/ placement blockages

OROUTING: Routing Width Scaling

Algorithm takeaways

✓ Further reduce free routing resources

✓ Increase wire width of different metal layers selectively

Multi-Objective Flow Parameter Tuning

Capture trade-offs between security and performance
 Parameter space size: 945k (given 10 routing layers)

Parameter Name	Description	Candidate Values				
op_select LDA::N LDA::n_iter RWS::scale_M[i]	The selected ECO-place operator #Grids in a row/column #Density adjustment iterations Routing width scale factor of metal i (i = 1,, K)	"CS", "LDA" 2, 4, 8, 16, 32 1, 2, 3 1.0, 1.2, 1.5	CS: Cell Shift LDA: Local Density Adjustment RWS: Routing Width Scaling			

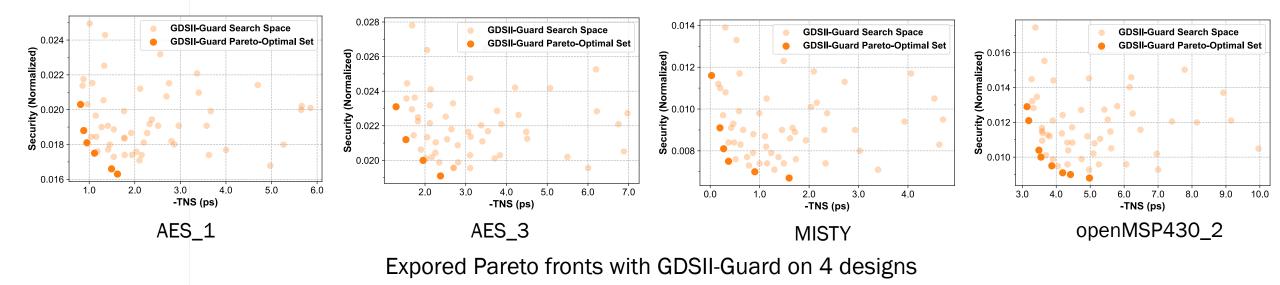
Parameter space of GDSII-Guard flow

Setup

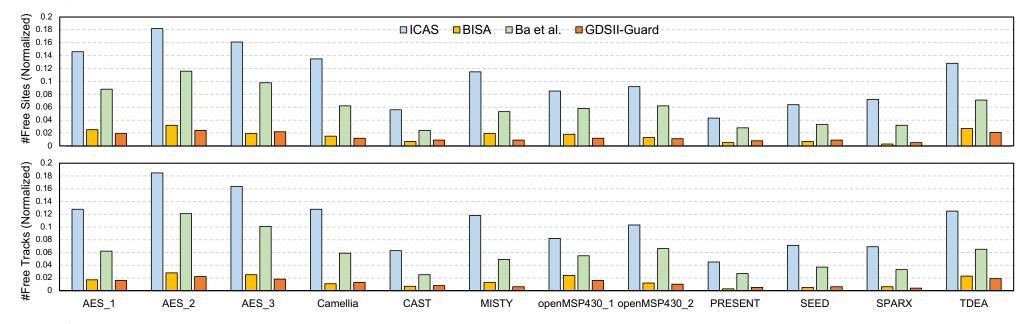
- CPU: 2-way 24-core Intel Xeon Gold 6248R @3.0GHz
- RAM: 512GB DDR4
- Using multi-processing to accelerate flow tuning

Implementation

- Frontend: Python&Tcl scripts
- Backend: Cadence[®] Innovus[™] 19.12


Baselines

- Original design (w.o. security optimization)
- ICAS [T. Trippel *et al.*, S&P'20] Tune EDA params (e.g., density, slew, frequency)
- BISA [K. Xiao *et al.*, HOST'13] Fill empty sites with tamper-evident logic
- Ba+ [P. Ba et al., ISVLSI'16] Improve BISA by prioritizing critical empty spaces


Effective ness of multi-objective optimization

• Comparison with state-of-the-art: Security analysis

16

• Lowers the risk of Trojan insertion by 98.8% on average.

Obtain the best overall security results.

• Comparison with state-of-the-art: Overhead analysis

TNS(ps)	AES_1	AES_2	AES_3	Camellia	CAST	MISTY	openMSP430_1	openMSP430_2	PRESENT	SEED	SPARX	TDEA
Original Design	-0.998	-2.577	-1.432	0	-6.693	0	0	-2.946	0	-6.693	0	0
ICAS [10]	-1.657	-2.737	-3.356	0	-7.73	-0.414	0	-4.281	0	-8.025	0	-0.012
BISA [11]	-4.256	-9.731	-8.367	-1.23	-25.324	-4.257	-1.582	-7.768	0	-21.205	-1.432	-2.87
Ba et al. [12], [13]	-1.818	-3.47	-2.285	0	-10.589	-0.356	-0.021	-4.875	0	-8.924	0	-0.56
GDSII-Guard	-1.116	-2.893	-1.954	0	-8.035	-0.371	0	-3.548	0	-5.978	0	0
Power(mW)	AES_1	AES_2	AES_3	Camellia	CAST	MISTY	openMSP430_1	openMSP430_2	PRESENT	SEED	SPARX	TDEA
Original Design	66.667	68.906	67.72	1.691	4.596	3.302	0.375	1.161	0.377	4.596	2.252	1.482
ICAS [10]	69.807	70.092	73.863	1.634	6.274	3.141	0.372	1.186	0.41	4.615	2.253	1.458
BISA [11]	81.752	91.424	84.35	2.554	9.124	5.848	0.473	2.069	0.483	6.172	3.065	1.927
Ba et al. [12], [13]	75.403	77.38	74.583	2.104	5.973	3.954	0.388	1.536	0.434	4.892	2.266	1.503
GDSII-Guard	71.874	72.782	70.548	1.812	5.168	3.893	0.394	1.214	0.395	4.678	2.249	1.533
#DRC	AES_1	AES_2	AES_3	Camellia	CAST	MISTY	openMSP430_1	openMSP430_2	PRESENT	SEED	SPARX	TDEA
Original Design	0	12	0	0	0	0	0	0	0	0	0	0
ICAS [10]	0	15	0	0	0	0	0	0	0	9	0	0
BISA [11]	11	57	5	3	45	0	0	18	0	24	0	13
Ba et al. [12], [13]	5	41	0	0	19	0	0	3	0	11	0	0
GDSII-Guard	0	16	0	0	3	0	0	0	0	0	0	0

• Minimal overall timing, power and design quality downgradation

Strick a good balance between security and timing

Conclusion

ECO layout enhancement

✓ Multi-objective (security, PPA) optimization formulation

✓ Flexible ECO anti-Trojan P&R flow

Efficient flow parameter tuning

The results show that

✓ GDSII-Guard significantly improves layout security

✓GDSII-Guard reduces timing, DRC, power side effects brought by security measures

Thank You! Welcome to my poster for more details

weixinming@pku.edu.cn

