
GDSII-Guard: ECO Anti-Trojan Optimization with
Exploratory Timing-Security Trade-Offs

Xinming Wei, Jiaxi Zhang, Guojie LuoB
School of Computer Science, Peking University

Center for Energy-efficient Computing and Applications, Peking University
{weixinming, zhangjiaxi, gluo}@pku.edu.cn

Abstract—With the ever-shrinking feature size of transistors, the
exorbitant cost has driven the massive outsourcing of integrated circuits
(IC) fabrication. However, this outsourcing poses significant security risks
because untrustworthy foundries can conduct insidious fabrication-time
attacks without close supervision. Therefore, it is crucial to undertake
design-time protection before sending finalized design layouts to the
foundry. Foundry-level hardware Trojan has emerged as a major security
threat, but existing design-time countermeasures lack sufficient consid-
eration of good trade-offs between design security and performance.

This work proposes an automatic framework, GDSII-Guard, to
strengthen implemented physical layouts against potential fabrication-
time Trojan attacks while preserving design performance, power, and
quality. We develop an Engineering Change Order (ECO) placement and
routing (P&R) flow containing elaborate anti-Trojan operators to prevent
Trojan insertion. Moreover, we introduce a multi-objective optimization
model with evolutionary strategies that incorporate anti-Trojan flow
information to exploit balances between the aforementioned multiple
design metrics. Experimental results demonstrate that GDSII-Guard
reduces the overall risk of Trojan attacks on given designs by 98.8%
with minimized timing, power, and design quality impact, surpassing
existing approaches prominently.

I. INTRODUCTION

Thanks to the exponential power of Moore’s law, transistors in
modern Integrated Circuits (ICs) have shrunk to deep nanoscale levels
(e.g., 3nm/5nm process). This ever-shrinking trend of transistors has
promised higher miniaturization, better performance, and lower power
consumption. However, the dramatic increase in chip complexity has
driven the cost of IC manufacturing sky-high, which is prohibitive for
most IC designers or companies. As a result, mask production, chip
fabrication, and final test services are largely outsourced throughout
the modern IC industry, while entirely in-house supply chains are rare
to be found. Since IC design flows are mostly fabless, untrustworthy
foundries can make malicious hardware modifications, known as a
fabrication-time attack. Previous works demonstrate several ways
that fabrication-time attackers can insert a hardware Trojan into an
otherwise trusted, tapeout-ready IC layout [1]–[3], which has emerged
as a major hardware security concern [4].

The objectives and measures to insert hardware Trojans can be
manifold. Undesirable effects introduced to target hardware or sys-
tems are: 1) Functional change, error injection, or system failure.
2) Performance degradation. 3) Sensitive information leakage [4].
A hardware Trojan consists of two key components: trigger and
payload. The trigger activates the payload when some attack condition
is satisfied, and the payload serves to execute actual attacks, e.g.,
altering the circuit functionality. While diverse fabrication-time attack
schemes have been proposed, they tend to share one similarity:
Trojan insertion requires extra free space on the finalized physical
layout of an IC. Attackers need to exploit unused placement and
routing resources to append Trojan gates and wires, and integrate
Trojan logic with victim circuit instances.

Due to the stealthy nature of hardware Trojans, it is quite chal-
lenging to protect ICs against fabrication-time Trojans. Conventional

post-manufacturing test and post-silicon validation cannot reliably
detect Trojans because Trojan instances tend to have varying forms
and sizes, and only by rare events will they be triggered. Previous
works mainly focus on the Trojan detection in two broad classes:
logic testing [5], [6] and side-channel analysis [7]–[9]. Despite
being effective in recognizing some kinds of Trojans, detection-
based efforts are still prone to elaborate attack models or Trojans
with small footprints [4]. Moreover, unlike software, there is no
remedy for vulnerabilities detected in ICs after manufacturing. Given
the limitations of Trojan detection methods, security-by-design, i.e.,
hardening the IC layout to frustrate foundry-level Trojan injection,
should play a more fundamental role. However, Security-by-design
approaches are challenging because 1) Design rules and overall
functional equivalence of the original design should be followed.
2) Potent security techniques can compromise IC performance and
design quality. 3) Mainstream commercial and open-source CAD
tools are performance-driven and have no direct support for security
at design time.

Recent security-by-design works focus on pre-fabrication, IC
layout-level, Trojan prevention [10]–[13]. These works increase the
utilization of placement and/or routing resources of the design, to
squeeze the available spaces or routing tracks for Trojan inser-
tion. Two major techniques have been proposed and proved useful.
ICAS [10] works in an undirected manner by adjusting some P&R
parameters (e.g., core density, slew rate) to increase P&R utilization.
BISA [11] and Ba et al. [12], [13] fill unused spaces on the layout
with tamper-evident logic. Nevertheless, though such defenses create
barriers for attackers to P&R Trojans, they cannot provide complete
confidence against diverse Trojan attacks. Moreover, performance,
power, and area (PPA) overheads brought by such approaches are not
well demonstrated. For example, increasing global placement density
can lower the risk of Trojan insertion by reducing free spaces on the
layout, but timing and design quality may inevitably get worsen due
to routing congestion.

In this paper, following the notion of security-by-design at physi-
cal layout level, we propose GDSII-Guard, an ECO framework to
reinforce finalized physical designs against Trojan insertion with
timing co-optimization. DRC and power dissipation are also taken
into account. Our contributions can be summarized as follows:
• We propose a novel security-driven, timing-aware automatic

framework to prevent malicious Trojan insertion while preserv-
ing design performance, DRC, and power.

• We develop a suite of parametric, composable, and customized
ECO P&R operators: Cell Shift, Local Density Adjustment, and
Routing Width Scaling, which together construct an anti-Trojan
CAD flow.

• We introduce a multi-objective optimization model to charac-
terize GDSII-Guard flow parameter space and explore Pareto
optimality between security and timing.



• We evaluate GDSII-Guard on comprehensive benchmarks,
including crypto cores and microprocessors. GDSII-Guard
strengthened designs demonstrate an average of 98.8% lowering
of Trojan insertion risk with modest timing, power and design
quality overheads, outperforming state-of-the-art defenses in
both aspects.

II. BACKGROUND

A. Security Metrics

The prior art has proposed several sets of metrics to evaluate
the difficulty of injecting hardware Trojans into a given physical
layout [10], [14], [15]. Most recently, J. Knechtel et al. [14] develop
a framework for the evaluation of P&R resources available for Trojan
insertion.

Definition 2.1 (Security-Critical Cells [14]): Security-critical cells
are defined as sensitive cells to be protected in a design. Usually,
they belong to key-memory registers or key-control logic. They are
highly likely to become the target of Trojan attackers.

Definition 2.2 (Exploitable Regions [14]): Exploitable regions
are generally sets of contiguous placement sites which are free for
Trojan insertion, i.e., empty, or occupied by filler cells/non-functional
cells/dangling functional cells. A single exploitable region is defined
with the following prerequisites: 1) It is a set of spatially (vertical
and/or horizontal in a layout) adjacent exploitable sites. 2) Sites in the
set are within an exploitable distance of security-critical cell assets
defined in Definition 2.1 because timing constraints still need to be
met after Trojan insertion. 3) The total number of sites in the set is
no less than a threshold, Thresh_ER.

To be more specific about exploitable regions, setting a threshold
to the site number is based on the observation that at least a few
contiguous sites are needed for Trojan insertion. The exploitable
distance is determined as follows: Firstly, paths with positive timing
slacks to security-critical cell assets are extracted. Next, an additional
NAND gate representing a simplest Trojan is appended into the paths.
Finally, the maximal distance (both horizontally and vertically) of
Trojan routing after which the consumed slacks still meet timing,
is defined as exploitable distance. Fig. 1 shows an example layout
with all exploitable regions annotated. It can be estimated that empty
spaces close to security-critical assets tend to be exploitable because
of the exploitable distance limitations. As for the quantization of the
exploitable region, [14] proposes the following two sub-metrics:
Free Placement Sites: #sites composing all exploitable regions.
Free Routing Tracks: #unused routing tracks across all metal layers
over all exploitable regions.

B. Threat Model

Our threat model mostly follows that adopted by previous works on
foundry-level Trojan attacks and defenses [3], [10]. Specifically, we
focus on malicious Trojan attacks at fabrication-time and assume all
the other phases are trusted. The design process before tapeout, which
consists of RTL design, logic synthesis, and P&R, together with the
post-fabrication test and packaging, are warranted to be performed
by trusted parties. Our focus on fabrication-time is motivated by
current IC supply chains, economic forces, and technology reasons
that require heavy reliance on outsourced production and otherwise
trusted foundries.

Right after tapeout, the attacker in the untrusted foundry starts
with the GDSII file. Our threat model assumes the worst case
for the defender, that the attacker is fully capable of extracting
circuit interconnections and components from the GDSII layout to
restore schematic and netlist information, with techniques such as

Fig. 1: Exploitable regions (in red), security-critical cells (dark blue rectan-
gles), and all other cells (light blue rectangles) in a placed and routed (routes
are hidden) layout.

reverse engineering. This stems obfuscation-based defenses because
the attacker can select viable victim instances and wires in the
physical layout to tap. We assume that the adversary manipulates
the trusted layout by inserting additional cells/wires; they cannot
remove, resize, or shift existing circuit components. These operations
are almost infeasible in practice because they take a high risk of
either spoiling the functional equivalence of the underlying design
or violating the fragile timing constraints and design rules [10],
[14]. Even if such problems may be addressed by arduous fixes,
the increased lead time for chip fabrication will break the tight
limit agreed in the contract. Moreover, the attacker cannot extend
the layers, dimensions or size of the current design, which can be
easily discovered after manufacturing. To sum up, in the scope of
our work, we assume that the attacker exploits open spaces in the
original GDSII for Trojan implementation.

C. Problem Formulation

Given some baseline physical designs, we summarize the problem
as hardening the physical layouts to reduce exploitable regions and
thwart Trojan insertion. We consider performance, power, and DRC
overheads as well. Throughout the rest of the paper, we denote Lbase

and Lopt as the baseline and optimized layouts, f(·;x) as our security
flow, D as the hyper-parameter space of the flow and x ∈ D as a
parameter feature vector. Let ERsites(·), ERtracks(·) denote the
sum of free sites and tracks of all the exploitable regions in a layout.
Then, the security metric can be formulated as a weighted sum of
ERsites(·) and ERtracks(·), normalized by the baseline design:

Security(Lopt) = α · ERsites(Lopt)

ERsites(Lbase)
+(1−α) · ERtracks(Lopt)

ERtracks(Lbase)

We measure timing with Total Negative Slack (TNS). Designs
with better timing have negative TNS closer to 0, and the optimal
TNS is 0. Power and design cost are characterized by total (leakage,
switching, and internal) power and DRC violations, respectively. Now
our problem formulation can be summarized as follows:

Inputs: Lbase, security-critical assets list, timing specifications.
Output: Lopt = f(Lbase;x)



Objectives:

min Security(Lopt)

min −TNS(Lopt)

s.t. DRC viol(Lopt) 6 NDRC,

Power(Lopt) 6 βpower · Power(Lbase).

The goal is to find an effective layout optimization flow f(·;x)
and the Pareto-optimal parameter configuration x, which bring about
improved security metrics and performance while minimizing the
impact on power and DRC. Valid results should be subject to the
DRC and power upper bounds.

III. GDSII-GUARD

A. Overview of GDSII-Guard

Fig. 2 shows an overview of GDSII-Guard framework. The core of
GDSII-Guard is a security-driven, timing-aware ECO P&R flow. It
takes an implemented baseline layout, LIB/LEF libraries, annotated
security-critical cell assets, and a parameter configuration vector of
the flow as the input. Initially we preprocess the original design
such that the critical cells will not be removed or replaced dur-
ing the subsequent security optimization. As for the ECO security
enhancement, we propose two alternative ECO placement operators
and one ECO routing operator. After the design is fully augmented,
GDSII-Guard extracts the post-design metrics (i.e., security, timing,
DRC, and power), and iteratively explores the optimal flow parameter
configurations for the given design. Finally, we derive a set of Pareto-
optimal enhanced layouts with security and performance trade-offs.

Security, timing, DRC, 
power, etc.

Anti-Trojan ECO-Route

Anti-Trojan ECO-Place

GDS2Guard ECO Flow

Selection

Crossover & Mutation

GDS2Guard Param. Space

Offspring 
Set

Parent 
Set

Cell Shift
Local 

Density 
Adjustment

Routing Width Scaling

Preprocessing

······

······

······

······

······

······

······

······

······

······

······

······

No

Yes

Pareto-Optimal Designs

Param. Set

Converge?Metric Set

Fig. 2: Overview of GDSII-Guard.

B. Anti-Trojan ECO Placement

Placement is the most important stage for security strengthening
measures to eliminate as many exploitable regions in a layout as
possible. However, previous placement-centric approaches cannot
provide both security confidence and PPA assurance. Running global
placement at higher density [10] is essentially security-agnostic and
consumes lengthy runtime. Filling empty spaces with functional
logic [11]–[13] requires >90% local placement density, which un-
dermines routability and timing closure.

In our work, instead of reducing exploitable regions in a “blind”
manner, we manage to perform meticulous Trojan-resistant ECO
placement without sacrificing design performance and quality. We
conduct security and timing optimizations simultaneously. According

to different attributes (e.g., timing constraints, initial placement den-
sity) of the original design, we propose the following two alternative
anti-Trojan ECO placement operators.

1) Cell Shift (CS): Cell shift manages to erase exploitable regions
globally in a layout by row-wise shift of cells. This operator applies
well for designs with loose timing constraints (i.e., the target clock
frequency is easy to achieve after P&R) because in such designs
exploitable distances can be so long as to spread across the whole
core, and the operator attempts to eliminate large continuous regions
everywhere without pursuing a soaring placement density.

We propose an undirected graph model G = (V,E) to represent
all the empty sites in each row of a physical layout. Fig. 3 depicts
the cell-shift process and the corresponding graph model of a tiny
example layout. A vertex v ∈ V (the circle in Fig. 3) refers to a
few contiguous sites in the same core row. It adjoins either a cell or
the core boundary. Let the weight of v, w(v) (the number in circles
in Fig. 3) denote the number of sites in the vertex. Two vertices
v1, v2 are defined to be connected (i.e., ∃e ∈ E, e = (v1, v2))
iff 1) they are in two adjacent rows respectively, and 2) some of
their sites are contiguous, i.e., there exists a site s1 in v1, s2 in
v2 such that s1 and s2 are aligned vertically. A component C of
this graph is a connected subgraph that is not a part of any larger
connected subgraph. Obviously, all components partition the vertices
in the graph into disjoint sets. The weight of C, w(C) refers to
the summation of sites in the included vertices of the component.
So we have w(C) =

∑
(v,e)∈C w(v). If w(C) > Thresh_ER, the

component C is an exploitable region. Let C = compo(v) denote
the component containing the vertex v. A vertex is involved in one
and only one component according to their definitions. The objective
is to shift cells to minimize |{C|w(C) > Thresh_ER}|.

A B C D
E F G

I J
M

K L
N O

H

A B C D
E F G

I J
M

K L
N O

H

11 6
1087

27
7

2 4 4 7
12 9 6

11 6
887

27
9

2 2 6 4
10 11 2

3
4

Shift

Fig. 3: A toy example layout with the corresponding graph representation.
Gray instances with a letter inside are placed cells. Sites/Vertices in red
are within exploitable regions/components whose weights reach Thresh_ER
(here we take 20). Exploitable regions are erased after row-wise cell shift.

We summarize the procedure of our greedy-based, cell shift
algorithm as follows. The cells are shifted horizontally row by row.
When processing a row, we construct the graph with the current row
and all previously processed rows. Then we visit each vertex v in the
row sequentially and obtain C = compo(v) through depth-first search
(DFS) traversal. If C is exploitable, the adjacent cell on the right will
be moved left to decrease w(v), until compo(v) < Thresh_ER or
the vertex disappears (i.e., w(v) = 0). The principle of movement
is to stop moving right after compo(v) is not exploitable, e.g.,
w(compo(v)) = Thresh_ER − 1. This makes moving distance as
short as possible, thus minimizing the impact on the timing of the
original design. Ideally, after processing all the cells in each row,
only the rightmost vertex may be in an exploitable region. Algorithm
1 depicts the details of the implementation. The same procedure,



except that the visiting sequence of vertices and the shift direction
is reversed, is performed then to remove the potential exploitable
regions on the right side of the core.

Algorithm 1: Greedy-Based Cell Shift
Input: A baseline layout Lbase with N rows. rows[] stores the

position information of cells in each row.

1 for i← 0 to N − 1 do
2 Build layout graph G0,i with rows[0 : i];
3 Get vertex list Vi in rows[i];
4 j ← 0;
5 while j < length(Vi) do
6 v ← Vi[j];
7 if w(compo(v)) > Thresh_ER then
8 cell← the cell on the right of v;
9 while w(v) > 0 && w(compo(v)) > Thresh_ER do

10 Shift cell left for one site;
11 Update rows[i], G0,i and Vi;
12 end
13 end
14 if is exist(v) then j++; . v is deleted from Vi if w(v)==0
15 end
16 end

2) Dynamic Local Density Adjustment (LDA): In addition to
wiping out large contiguous empty spaces globally, an alternative
is to adjust local placement density dynamically. In regard to designs
with tight timing constraints or low utilization rate, the cell shift
operator is no longer adequate because modifying cell positions
aggressively can deteriorate the fragile timing. In these designs, the
core utilization of about 50%∼60% is benign to timing closure, but
the cell shift algorithm cannot work at such a low density due to
excessive empty sites. Since the exploitable distance is relatively
short in timing-tight designs, empty sites near security-critical assets
tend to be more vulnerable. Based on the notion of localized density
elevation [16], we partition the layout into tiles and assign relatively
higher placement density to the parts with more security-critical
cells. Then we perform ECO placement to alter density distribution
incrementally. Note that the dynamic density rearrangement via ECO
placement is wire-length/timing driven. Therefore, the low-density
regions will be “pushed” away from security-critical cells with
minimized impact on circuit performance.

Algorithm 2 gives the full implementation of LDA. The core of the
layout is partitioned into N×N grids. We leverage placement block-
ages to control local placement density. A partial placement blockage
can set the density upper bound in a specified region. We create a
placement blockage in each grid, and specify the local density upper
limit with the following logistics: The number of security-critical
cells in each grid is counted and normalized, and then smoothed
into a valid density value (0∼100%) with sigmoid function. When
all the blockages are properly created, ECO placement incrementally
and efficiently manages the tile density. The above procedure can be
repeated for n_iter times to enhance the effect of LDA.

C. Anti-Trojan ECO Routing

To complement placement-centric operators, we develop the anti-
Trojan ECO Routing Width Scaling (RWS) to further reduce free
routing tracks. Routing-centric defensive approaches are challenging
because 1) imposing extra constraints on the router can easily deteri-
orate timing, and 2) appending shielding wires over security-critical
assets, despite being timing-oblivious, can be easily recognized and
removed by attackers due to their dangling nature.

To overcome these challenges, GDSII-Guard modifies the non-
default rule (NDR) defined in LEF file and increases the routing

Algorithm 2: Dynamic Local Density Adjustment
Input: A baseline layout Lbase

Data: Grid partition N ×N , iteration times n_iter

1 Divide Lbase into grids[N ][N ];
2 while n_iter- - do
3 Delete all existing placement blockages;
4 Initialize n assets[][] with #security-critical cells in each grid;
5 µ← mean(n assets[][]);
6 σ ← stddev(n assets[][]);
7 for i← 0 to N − 1 do
8 for j ← 0 to N − 1 do

9 densi,j ← sigmoid

(
n assets[i][j]− µ

σ

)
;

10 Create a placement blockage within grids[i][j] with
density upper bound densi,j ;

11 end
12 end
13 Run ECO placement;
14 end

wire width of different metal layers selectively. In a layout with K
metal layers, scale_M[i] denotes the routing width scaling factor
of layer i = 1, . . . ,K. For one thing, wider nets can further decrease
the remaining available routing tracks to prevent Trojan routing.
For another, reasonably wider nets, e.g., clock nets, have smaller
wire resistance and RC delay, thus improving overall timing [17].
Nevertheless, this anti-Trojan routing method works in a heuristic
way to minimize free tracks over exploitable regions, so we introduce
the black-box parameter tuning method in the next section to improve
security and timing simultaneously.

TABLE I: Parameter space of GDSII-Guard operators.

Parameter Name Description Candidate Values

op_select The selected ECO-place operator “CS”, “LDA”
LDA::N #Grids in a row/column 2, 4, 8, 16, 32

LDA::n_iter #Density adjustment iterations 1, 2, 3

RWS::scale_M[i]
Routing width scale factor of metal i

(i = 1, . . . , K)
1.0, 1.2, 1.5

D. Multi-Objective Flow Parameter Tuning

We build a multi-objective optimization model upon the GDSII-
Guard ECO flow parameter space to capture the trade-offs between
security and performance, and guide the exploration process to find
the superior parameter configurations. Table I lists the GDSII-Guard
parameter space, whose size is up to 945k given 10 routing layers.
We adapt Genetic Algorithm (GA) to our context and map our
parameter space to GA chromosomes (i.e., solution vectors). Each
parameter is encoded as a gene in the chromosome. GA evaluates
each chromosome with a so-called fitness function and selects prior
ones from the population (i.e., a pool of chromosomes). GDSII-Guard
determines fitness according to many factors: valid solutions should
first meet hard constraints of power and DRC described in §II-C,
and then those with better security and timing metrics will prevail.
To generate new solutions called offspring, crossover and mutation
are two key genetic operators in GA. Genes of good chromosomes
are expected to maintain in the population. For example, in a design
with high placement density and tight timing constraints, too wide
routes will cause routing congestion everywhere and easily deteriorate
timing. Under such conditions, route scale genes, i.e., scale_M[i]
(i = 1, . . . ,K) of 1.0 will appear more frequently in the population.
The algorithm terminates if the population has converged (i.e., does
not reproduce offsprings with pronounced improvements).



0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2

ICAS BISA Ba et al. GDSII-Guard

0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18
0.2

AES_1 AES_2 AES_3 Camellia CAST MISTY openMSP430_1 openMSP430_2 PRESENT SEED SPARX TDEA

#F
re

e 
Si

te
s 

(N
or

m
al

iz
ed

)
#F

re
e 

Tr
ac

ks
 (N

or
m

al
iz

ed
)

Fig. 4: Comparison of security metrics (normalized total free sites/tracks).

IV. EVALUATIONS

A. Experimental Setup

Implementation. GDSII-Guard integrates the frontend customized
Python/Tcl scripts with the commercial EDA tool, Cadence In-
novus 19.12 as the P&R backend. We introduce a well-known multi-
objective GA variant, NSGA-II [18] to improve the convergency
and efficiency of GDSII-Guard flow optimizer. We also implement
a process-level parallelism to fundamentally speed up the parameter
space exploration.
Multi-Objective Model Parameter. We determine the values of
parameters in the multi-objective model (§II-C) according to the
realistic IC process and actual Trojan conditions. Taken from A2
Trojan [3], [14], we set the value of Thresh_ER as 20. We assign
α = 0.5, NDRC = 20, and βpower = 1.2 such that: 1) we equally
weight free sites and tracks for security evaluation, and 2) we tolerate
minor DRC/power degradation, which can further be manually fixed.
Benchmarks and Libraries. We utilize the benchmarks and security
metrics in [14] to evaluate our defensive approaches. The benchmark
includes physical designs with varied complexity, size, utilization and
timing constraints. The designs contain crypto cores and micropro-
cessors. Each design is attached with a list of security-critical cell
assets and SDC, MMMC files for timing constraints. The technology
library (LIB/LEF) we use is Nangate 45nm Open Cell Library [19],
which has 10 available metal layers (K = 10).
Baselines. We apply GDSII-Guard defensive optimizations on final-
ized layout designs, observing the security improvements and extra
overheads. Besides, we compare GDSII-Guard with three state-of-
the-art, design-time, layout-level defenses: ICAS [10], BISA [11],
and Ba et al. [12], [13].

B. Explored Pareto Fronts

We record the process of GDSII-Guard parameter space explo-
ration. Fig. 5 illustrates the search space and the explored Pareto
fronts of on designs AES 1, AES 3, MISTY, and openMSP430 2.
The security value is normalized with the baseline design as described
in §II-C. The model has converged within a few iterations, indicated
by the growing point density near the explored Pareto front. The
results show that we can derive the Pareto-optimal parameter set
of GDSII-Guard by sampling and evaluating a modest number of
defensive schemes. Moreover, we observe the diversity of Pareto-
optimal solutions given that few clusters are formed. GDSII-Guard
explores the Pareto front efficiently with short runtime, thanks to both
the moderate size of the actual search space and the multi-processing

techniques. Eventually, we obtain good trade-offs between security
and timing.

1.0 2.0 3.0 4.0 5.0 6.0
-TNS (ps)

0.016

0.018

0.020

0.022

0.024

Se
cu

rit
y 

(N
or

m
al

iz
ed

)

GDSII-Guard Search Space
GDSII-Guard Pareto-Optimal Set

(a) AES 1

2.0 3.0 4.0 5.0 6.0 7.0
-TNS (ps)

0.020

0.022

0.024

0.026

0.028

Se
cu

rit
y 

(N
or

m
al

iz
ed

)

GDSII-Guard Search Space
GDSII-Guard Pareto-Optimal Set

(b) AES 3

0.0 1.0 2.0 3.0 4.0
-TNS (ps)

0.008

0.010

0.012

0.014

Se
cu

rit
y 

(N
or

m
al

iz
ed

)

GDSII-Guard Search Space
GDSII-Guard Pareto-Optimal Set

(c) MISTY

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
-TNS (ps)

0.010

0.012

0.014

0.016

Se
cu

rit
y 

(N
or

m
al

iz
ed

)

GDSII-Guard Search Space
GDSII-Guard Pareto-Optimal Set

(d) openMSP430 2

Fig. 5: Explored Pareto fronts with GDSII-Guard on 4 designs.

C. Comparison of Optimized Physical Designs

For each design in the benchmark, we select a Pareto solution from
the Pareto-optimal set found by GDSII-Guard. They we compare its
security metrics, performance and design cost against other defensive
measures and study the security-timing trade-offs of these measures.
Security Analysis. Fig. 4 demonstrates the comparison of the two
security metrics normalized with the baseline design, i.e., normalized
total free sites/tracks are the division of actual total free sites/tracks
of the optimized design by the original. The average remaining free
sites over all designs after optimizations by ICAS [10], BISA [11],
Ba et al. [12], [13], and GDSII-Guard are 10.7%, 1.6%, 6%,
1.3%, while the average free tracks are 10.6%,1.4%, 5.8%, 1.1%,
respectively. The undirected CAD parameter tuning of ICAS proves
inadequate to effectively eliminate vulnerable regions. BISA fills the
layout with extra logic ubiquitously and reduces most of Trojan-
available resources, though at the expense of performance and design
quality (discussed later). Ba et al. advanced BISA by appending the
logic locally near security-critical cells while the defensive coverage
is discounted. GDSII-Guard successfully lowers the risk of Trojan
insertion by 98.8% on average via dedicated management of empty
spaces on the layout without driving local or global placement density
extremely high. Moreover, the normalized free routing tracks are 15%



TABLE II: Comparison of timing (TNS), power, and #DRC violations.

TNS(ps) AES 1 AES 2 AES 3 Camellia CAST MISTY openMSP430 1 openMSP430 2 PRESENT SEED SPARX TDEA
Original Design -0.998 -2.577 -1.432 0 -6.693 0 0 -2.946 0 -6.693 0 0

ICAS [10] -1.657 -2.737 -3.356 0 -7.73 -0.414 0 -4.281 0 -8.025 0 -0.012
BISA [11] -4.256 -9.731 -8.367 -1.23 -25.324 -4.257 -1.582 -7.768 0 -21.205 -1.432 -2.87

Ba et al. [12], [13] -1.818 -3.47 -2.285 0 -10.589 -0.356 -0.021 -4.875 0 -8.924 0 -0.56
GDSII-Guard -1.116 -2.893 -1.954 0 -8.035 -0.371 0 -3.548 0 -5.978 0 0

Power(mW ) AES 1 AES 2 AES 3 Camellia CAST MISTY openMSP430 1 openMSP430 2 PRESENT SEED SPARX TDEA
Original Design 66.667 68.906 67.72 1.691 4.596 3.302 0.375 1.161 0.377 4.596 2.252 1.482

ICAS [10] 69.807 70.092 73.863 1.634 6.274 3.141 0.372 1.186 0.41 4.615 2.253 1.458
BISA [11] 81.752 91.424 84.35 2.554 9.124 5.848 0.473 2.069 0.483 6.172 3.065 1.927

Ba et al. [12], [13] 75.403 77.38 74.583 2.104 5.973 3.954 0.388 1.536 0.434 4.892 2.266 1.503
GDSII-Guard 71.874 72.782 70.548 1.812 5.168 3.893 0.394 1.214 0.395 4.678 2.249 1.533

#DRC AES 1 AES 2 AES 3 Camellia CAST MISTY openMSP430 1 openMSP430 2 PRESENT SEED SPARX TDEA
Original Design 0 12 0 0 0 0 0 0 0 0 0 0

ICAS [10] 0 15 0 0 0 0 0 0 0 9 0 0
BISA [11] 11 57 5 3 45 0 0 18 0 24 0 13

Ba et al. [12], [13] 5 41 0 0 19 0 0 3 0 11 0 0
GDSII-Guard 0 16 0 0 3 0 0 0 0 0 0 0

less than the site counterpart, which would have been equal without
Routing Width Scaling since they are all proportional to the area
of exploitable regions. Therefore, anti-Trojan ECO routing further
reduces available routing resources on top of ECO-placement.
Performance, Power and DRC Analysis. As shown in Table II,
GDSII-Guard demonstrates the minimal overall timing, power, and
design quality degradation among all the defenses. The increase in
TNS, power consumption, and DRC errors is within an acceptable
range. BISA and Ba et al. suffer from notable power overheads
because they append much additive logic to the original design. As for
timing and DRC, although Ba et al. improves BISA by prioritizing the
empty spaces and decreasing the utilization rate, it still requires 90%
local density at least, which inevitably causes routing congestion,
timing problems, and design rule violations. GDSII-Guard is the
first to optimize security and timing simultaneously while preserving
power and design quality. With our PPA-friendly ECO P&R tech-
niques and multi-objective optimization model, GDSII-Guard strikes
a good balance between security and timing.

D. Comparison of Runtime

The runtime of GDSII-Guard is closely related to the design size,
varying from minutes to hours. Taking the largest design in the
benchmark, AES 2 as an example, ICAS, BISA, Ba et al., and
GDSII-Guard takes 9.4, 6.5, 7.0, 4.8 hours respectively to complete
the optimization. ICAS performs the time-consuming global P&R
and exhaustive parameter tuning. BISA and Ba et al. spend much
time on synthesizing the introduced logic and P&R at a high density.
GDSII-Guard is based on efficient ECO incremental operators and
utilizes multi-processing and pruning to minimize the GA rounds.
Accordingly, the runtime of GDSII-Guard remains relatively short,
given complex designs.

V. CONCLUSIONS

In this paper, we propose an anti-Trojan, timing-aware ECO frame-
work to harden physical layouts against malicious hardware Trojan
while minimizing the side effects brought by security measures, e.g.,
performance downgrading, DRC violations, and power increase. We
develop several anti-Trojan methodologies at ECO P&R stage and
design a multi-objective optimization model to explore the security-
timing trade-offs in the flow parameter space. Experiments show that
GDSII-Guard significantly improves security while preserving timing,
power and design quality compared with the prior art. We expect to
see booming researches in the hardware security community to further

explore the coverage metrics and countermeasures of hardware Trojan
or other extensive security threats.

ACKNOWLEDGMENT

This work was partly supported by National Key R&D Program
of China (Grant No. 2022YFB4500500), National Natural Science
Foundation of China (Grant No. 62090021), and DeePoly Technology
Inc.

REFERENCES

[1] G. T. Becker et al., “Stealthy dopant-level hardware Trojans: extended
version,” J. Cryptogr. Eng., vol. 4, no. 1, pp. 19–31, 2014.

[2] R. Kumar et al., “Parametric Trojans for fault-injection attacks on
cryptographic hardware,” in FDTC, 2014.

[3] K. Yang et al., “A2: analog malicious hardware,” in IEEE Symposium
on Security and Privacy, 2016.

[4] R. Karri et al., “Trustworthy hardware: Identifying and classifying
hardware trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010.

[5] R. S. Chakraborty et al., “MERO: A statistical approach for hardware
trojan detection,” in CHES, 2009.

[6] M. Banga et al., “Guided test generation for isolation and detection of
embedded Trojans in ICs,” in GLSVLSI, 2008.

[7] Y. Alkabani et al., “Consistency-based characterization for IC trojan
detection,” in ICCAD, 2009.

[8] M. Potkonjak et al., “Hardware Trojan horse detection using gate-level
characterization,” in DAC, 2009.

[9] D. Rai et al., “Performance of delay-based Trojan detection techniques
under parameter variations,” in HOST, 2009.

[10] T. Trippel et al., “ICAS: an extensible framework for estimating the
susceptibility of IC layouts to additive Trojans,” in IEEE Symposium on
Security and Privacy, 2020.

[11] K. Xiao et al., “BISA: built-in self-authentication for preventing hard-
ware trojan insertion,” in HOST, 2013.

[12] P. Ba et al., “Hardware Trojan prevention using layout-level design
approach,” in ECCTD, 2015, pp. 1–4.

[13] P. Ba et al., “Hardware trust through layout filling: A hardware Trojan
prevention technique,” in ISVLSI, 2016.

[14] J. Knechtel et al., “Benchmarking security closure of physical layouts:
ISPD 2022 contest,” in ISPD, 2022.

[15] H. Salmani et al., “Vulnerability analysis of a circuit layout to hardware
trojan insertion,” IEEE Trans. Inf. Forensics Secur., vol. 11, no. 6, pp.
1214–1225, 2016.

[16] J. Knechtel et al., “Security closure of physical layouts ICCAD special
session paper,” in ICCAD, 2021.

[17] A. Kahng et al., VLSI physical design: from graph partitioning to timing
closure. Springer, 2011, vol. 312.

[18] K. Deb et al., “A fast and elitist multiobjective genetic algorithm: NSGA-
II,” IEEE Trans. Evol. Comput., vol. 6, no. 2, pp. 182–197, 2002.

[19] Nangate Inc 2011, “Nangate FreePDK45 Open Cell Library,” http:
//www.nangate.com.


